

An Open 3D Framework for the Development of Geographic Applications

Mickaël Brasebin – 11th AGILE Conference IGN, France COGIT, research laboratory

June 2nd – 5th 2009 Hannover, Germany

Introduction

✓ Why developing a 3D framework ?

Presentation of the framework

- Architecture,
- Functions
- Applications
 - Building generalization,
 - Project TerraMagna

Conclusion

3D applications

\checkmark Land Planning

✓ Risk and pollution

✓ Network management

- ✓ Antenna implantation
- ✓ Continuous spaces

Not only visualization, sur analysis to

GeOxygene

GEOXYGENE : Open framework for the development of interoperable applications

Project GeOxygene (http://oxygene-project.sourceforge.net/)

- ✓ Stemming from researches undergone at the COGIT laboratory
- ✓ Under LGPL license
- ✓ Last release : Version 1.3 on January

Features

- ✓ Schema based on ISO implementation (Geometry, metadata, feature ...)
- ✓ Developed in Java

 Provides PostGIS object connection with OJB (ObjectRelationalBridge) library

Role of the pivot geometric model

Ge xygene

Role of the pivot geometric model

Geexygene

Geometric model

Which pivot geometric schema ?

Gee xygene Role of the pivot geometric model

Data management

Which data can be loaded ?

GIS formats

- ✓ Shapefiles
- DTM, orthophotos
- ✓ CityGML

3D modeling ✓.obj ✓.3Ds

DBMS format ✓ PostGIS

PostGIS Loader

How to store geometries in PostGIS ?

PostGIS geometries ✓ POINT ✓ MULTIPOINT ✓ LINESTRING ✓ MULTILINESTRING ✓ POLYGON ✓ MULTIPOLYGON in 3D but POLYHEDRALSURFACE POLYHEDRON

 Loading/storing in PostGIS 8.3 & PostGIS 1.3 with Ojb

Solid geometries stored as MultiPolygon with flag

Loading ~ 8 s for 10 000 objects
 (4 s for an XML file)

 ✓ Storing ~ 10 s for 10 000 objects (6 s for an XML file)

Future improvement : Implementation of a polyhedron type as described in [Khuan , 2008]

Geexygene Role of the pivot geometric model

Visualization

How to represent the geometries ?

- ✓ Different representations for an object
- ✓ Choice of graphic library
 - Separation between feature and its representations
 - ♦ Use of Java3D

Functionalities

- ✓ 3D navigation
- ✓ Styled layer management
- Objects interrogation

Gesaxygene Role of the pivot geometric model

OGI

3D implemented functions

How to implement 3D operators ?✓ Current library JTS only for 2D

✓ Java open-source libraries uncommon

✓ Solid decomposition (TetGen [Hang Si, 2006])

Boolean operators (JGeom [Frick, 2004])

Implementation

Offsetting

- Convex hull
- ✓ Others (Center of gravity, volume …)

Providing functions described in the ISO specifications

Geometric issues

What about processing on geometries loaded ?

The meaning of what is a facet differs between datasets

- A facet is not equivalent to a wall
- The dome is an entire sphere

Bottomless buildings or bad face orientation cause

Constrained tetrahedrizationBoolean operators

not to be computable

Solution Need to develop tools to correct or to detect unexpected geometries

Gesaxygene Role of the pivot geometric model

OGI

Different models for analysis

Which other models ?

✓ De La Losa [2000]Topologic

✓ Ramos [2003] Network & intervisibility

✓ Rousseaux [2004]2D5 model

✓ Poupeau [2008]✓ Crystallographic

Different points of view on 3D tointegrate on 1 platform 19

Role of the pivot geometric model

Gesaxygene

Framework application

TerraNumerica project (Collaboration with French IT industries)

- Acquisition and representation of 3D databases
- Framework used to develop an algorithm of 3D building generalization

Simplification by buffer merging and reconstruction

✓ Based on [Kada, 2007]

Initial building

Parameter	0	1	2	5	10
Number of facets	312	32	25	10	9
Time in ms		41	41	37	35

Framework application

TerraMagna project (Collaboration with French IT industries)

Main goals

- Realize a 3D GIS on "Ile-de-France" region (Paris & neighborhood area)
- Application about environment

2 missions for the framework

Development of 3D geometric functions

3D editor of rules of urban design

Conclusion

- ✓ Framework release for the late 2009 with presented features
- ✓ All code is Open-source
- ✓ Functional 3D core
- ✓ Default interface
- Extendable geometric schema to capitalize different works
- ISO geometric functionalities provided

Any questions ?

GeOxygene website : <u>http://oxygene-project.sourceforge.net/</u>

E-mail : <u>mickael.brasebin@ign.fr</u>

Reserve

Dissimilarity calculation

✓ Based on [Osada, 2002]

Goals

- Check similarity between initial object and simplified one
- Determine threshold
- Classify buildings

Compare the distribution of distances in the shape

3D Model

Parameterization

[Osada 2002]

Dissimilaritv

Building generalization

✓ Based on [Kada, 2007]

Simplification by buffer merging and reconstruction

Low Z-fusion parameter

High Z-fusion parameter

Initial building

Fast algorithm effective with Bati3D buildings

Next step : comparison with others algorithms

						_
Parameter	0	1	2	5	10	
Number of facets	312	32	25	10	9	
Time in ms		41	41	37	35	28

3D implemented functions

Geometric operators

✓ Boolean operators (Intersection, union ...)

Solid decomposition
 (Into triangles, tetrahedrons ...)

Common calculation(Volume, center of gravity...)

Convex hull calculation, offsetting etc.

Use of selected open source libraries : TetGen [Hang Si, 2006] and JGeom [Frick, 2004]

Viewer

Technologies

- Swing Interface \checkmark
- Java3D for rendering \checkmark
- Separation between core and representation model

Ficl

Functionalities

- ✓ 3D navigation
- ✓ Styled layer management
- ✓ Objects interrogation

chier Vue Outils Calculs	Sélectionner	Supprimer	Copier	Information	Test
vers	ue globale 3D	(a			i e
] 🗂 Projet					
🛛 🗹 Building					
🎽 Ajout d'une d	ouche		($\overline{\mathbf{X}}$	
Nom de la couche	e Building				
Couleur	Activé	e			
Représentation s	olide 🖌				
				6.0	
Transparence					
	Ok	Non			
-			-	1 17	
					- 1

PostGIS Loader

✓ Loading/storing in PostGIS 8.3 & PostGIS 1.3 with Ojb

- PostGIS geometries
- POINT
- ✓ MULTIPOINT
- ✓ LINESTRING
- ✓ MULTILINESTRING
- ✓ POLYGON
- ✓ MULTIPOLYGON

Results

- Loading ~ 8 s for 10 000 objects
 (4 s for an XML file)
- ✓ Storing ~ 10 s for 10 000 objects (6 s for an XML file)

⇒ Solid geometries stored as MultiPolygon with flag

Future improvement : Implementation of a polyhedron type as described in [Khuan , 2008]

References

Frick Urs, Gerber Samuel, 2004, Boolean Operators for Java 3D

Hang Si, 2006, TetGen : A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator

ISO, 2003, Geographic information — Spatial Schema ISO Draft International Standard 19107:2003.

Kada M., 2007, 3D Building Generalisation by Roof Simplification and Typification. in proceedings of ICC2007, the International Cartography Association Conference, Moscow (Russia), 2007.

Khuan C.T., Abdul-Rahman A. and S. Zlatanova, 2008, New 3D data type and topological operations for Geo-DBMS In: V. Coors, M. Rumor, E. Fendel and S. Zlatanova (Eds.); Urban and regional data management: UDMS annual 2007, Taylor & Francis, 2008, pp. 211-222

Oasada, R., Funkhouser T., Chazelle B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21, 4, 807–832.