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ABSTRACT:

In most countries, a project for the development of an urban area has to obey zoning regulations. In France, such zoning regulations are
specified in local urban planning schemes (LUPS or PLU in French) defining the right to build at the scale of a parcel. Such rules define,
for example, the maximal building height. As the rules are stated in technical documents, they are not easy for non-professionals to
comprehend. It is also hard for professionals to assess their impacts. Driven by such issues, we propose to generate 3D building layouts
that comply with these rules while optimizing urban indicators (e.g. floor area ratio). A building layout can be seen as a realization of
a marked point process (MPP), which is a stochastic model mapping from a probability space to configurations of geometric objects,
namely horizontal 3D boxes. Then, the problem of finding an optimized building layout is converted into finding the optimal realization
of a MPP of 3D boxes. We solve this optimization problem by trans-dimensional simulated annealing (TDSA), which allows to explore
both parameter space and model space in order to find the combination optimizing a given criterion or energy function. A global energy
function is defined as the sum of weighted energy terms. Each energy term is able to penalize the building layouts that violate a specific
rule or favor the ones according to the optimization task. TDSA generates the optimal building layout by minimizing this global energy
using the coupling of a simulated annealing scheme with a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampler. We
studied several common types of the French PLU rules and modeled them into energy terms. A case study is conducted and the results
show that our proposed approach is capable of such an optimization task within a short computation time.

1 INTRODUCTION

As urbanization is increasing, environmental, social and econom-
ical issues that cities are facing are becoming more and more criti-
cal. Thus, in order to consider these issues, urban planners design
plans with the aim to regulate city development. These plans are
various and differ by their scale (scale of a city or of a building)
or by their preoccupations (displacement, social dwellings, etc.).
The conception of these documents is a difficult task for two main
reasons:

1. the information contained in plans is expressed with free text
and their influence on a territory is difficult to assess;

2. as different city issues have complex relationships, the ap-
plication of a plan supposed to improve an aspect of the city
can decrease the performances of other aspects.

To support the design of such documents, it is necessary to pro-
vide tools that enable to check if the application of a given doc-
ument has no side-effect according to the designers’ wishes but
also regarding other aspects of the city. Among different exist-
ing documents, this work is focused on constructability regula-
tion. This kind of regulation is widely defined worldwide and de-
scribes constraints that new buildings have to respect to obtain a
construction permit. The aim of this article is to propose a robust
simulation through the generation of building layouts that respect
constraints expressed by these regulations. In France, building
regulation is specified in local urban planning schemes (LUPSs
or PLU in French). On the one hand, such schemes define the
right to build at the scale of a parcel through 2D and 3D morpho-
logical rules (maximal height or floor area, for example) that, in
particular, projected buildings must respect. On the other hand,

PLU documents are opposable, which means that a permit cannot
be rejected if a project respects its rules.

In section 2, a state of the art describes several works that simu-
late similar constructability restrictions. Then, our proposed sim-
ulator that is based on the ”trans-dimensional simulated anneal-
ing ” optimization method is presented in section 3. In order
to produce desirable building layouts, this simulator integrates
constraints from the regulation in its optimization function as de-
scribed in section 4. Some experimentations are carried out on
real world data and with French regulations (section 5).

2 STATE OF THE ART

Different works try to ease the comprehension of urban regula-
tion through several types of approaches by: linking regulation to
related geographic features in a 3D viewer (Métral et al., 2009);
producing buildable hulls from geometric constraints (El Mak-
chouni, 1987, Murata, 2004, Brasebin et al., 2011); offering the
possibility to explore a predefined set of parametric buildings re-
specting rules (Coors et al., 2009); generating buildings (Turkienicz
et al., 2008, Parish and Müller, 2001, Brasebin, 2014) or propos-
ing extensions to existing buildings (Laurini and Vico, 1999).
Among these works, building generation offers, in our opinion,
the most promising results as it directly provides objects that can
be built. Nevertheless, mentioned approaches use heuristics or
procedural modeling that do not always fit with every terrain con-
figuration and cannot integrate preferences of different builder-
agents. Thus, we found necessary to adapt a building generation
method to the specificity of urban regulations.

Building generation methods are explored through various fields
such as architecture (Frazer, 1995), urban planning (Rittel and
Webber, 1973), geosimulation (Ruas et al., 2011) or computer



graphics (Wonka et al., 2003). The goal of the generation dif-
fers according to the domain. (Vanegas, 2013) distinguishes ge-
ometric and behavior based approaches that are not always dis-
cordant. Behavior based approaches aim to produce buildings
by integrating human processes and decisions whereas geomet-
ric approaches are designed to create fast and visually believable
objects. As the objective of this paper is to simulate urban reg-
ulations, it is necessary to integrate the preferences of different
agents that can construct buildings in order to assess the influ-
ence of the rules on different actors (for example, households or
building promoters). Generally, these preferences are translated
into utility functions that agents try to maximize.

To maximize such functions, optimization methods are used such
as Multi-Agent Systems (Ruas et al., 2011) or meta-heuristics
like evolutionary algorithms (Frazer, 1995) or simulated anneal-
ing (Bao et al., 2013) combined to geometric generative methods
like primitive instancing (Perret et al., 2010, Kämpf et al., 2010)
or shape grammars (Talton et al., 2011). In order to integrate
constraints, a large set of methods and their comparison are de-
scribed in (Coello Coello, 2010) including rejection, penalization
of the optimization function or fixing automatically solutions that
do not respect constraints.

3 PROPOSED APPROACH

(Brasebin, 2014) proposes a generic approach to generate build-
ing according to a model of French regulations. His method to
generate buildings is based on the approach presented in (Tour-
naire et al., 2010) for extracting building footprints from digital
elevation models which relies on marked point processes, a class
of random processes which realizations represent a set of objects
in a certain parameter space. Whereas in (Tournaire et al., 2010),
a configuration represents a collection of rectangle footprints in
image space, in (Brasebin, 2014), a configuration consists of rect-
angular parallelepipeds or cuboids we will from now on refer to
as boxes, each representing a building placed inside a land parcel.
The author proposes to optimize a given criteria (such as building
volume) and a constraint management by rejection during the op-
timization process. Using rejection allows for genericity in this
approach, but might deteriorate generated optimized configura-
tions: the creation of a non connex configuration search space
and ”barrier effects” due to strict constraints (such as ”a building
must be aligned with the roads”). Our objective is to propose a
more robust simulator, based on (Brasebin, 2014) principles, that
overcomes these issues by using an alternative constraints man-
agement approach.

3.1 Marked point process

A marked point process (Van Lieshout, 2000) is a stochastic model
defined by a probabilized space (Ω, π) with Ω =

⋃∞
n=0K

n

where K denotes the set of possible values of a single object
and n the number of such elements in a configuration. A sim-
ple probabilization of Ω may be given by the probabilization of
K and a discrete probability over N that samples the number n of
objects. Assuming that the probabilization of K may be sampled
directly, this yields a direct sampling of Ω according to this so-
called reference process. What is needed is however a sampler of
Ω according to a target density π that encodes the target objective
function to be minimized. We will present, in the next sections,
how this may be achieved using Reversible Jump Markov Chain
Monte Carlo (RJMCMC) and simulated annealing.

In our problem, each realization of the marked point process is
a building layout (a configuration of n buildings). Extending the

Figure 1: The land parcel, a single building box object and a
realization of the marked point process of boxes.

parameterization of 2D rectangles introduced in (Tournaire et al.,
2010), each building is described by its 2D center ci = (xi, yi),
its 2D semi-major axis vector ~vi = (ρi, θi), its aspect ratio ri ≤
1 and its height hi, using ri = li

Li
where Li = 2‖~vi‖ and li are

respectively the horizontal box dimensions along and across ~vi.

For efficiency, we prevent the sampling of buildings which cen-
ters ci lie outside the considered land parcel. This generation of
centers ci within the land parcel only is performed using a tri-
angulation of its defining polygon and a parameterization c′i =
(x′i, y

′
i) ∈ [0, 1]2 that enables the uniform sampling of points in-

side this set of triangles (Turk, 1990). K is therefore defined as
equation 1. Furthermore, ri is limited to [rmin, 1] in order to bet-
ter control building shapes, hi is sampled in [hmin, hmax] with
hmin the minimum height of a building and hmax the maximum
height depending of the local planning rules. Figure 1 illustrates
the search space as well as a realization of the process.

3.2 Reversible Jump Markov Chain Monte Carlo

RJMCMC is an extension of MCMC that allows the sampling
from a configuration space Ω of varying dimension (Green, 1995)
that only requires the unnormalized evaluation of its target dis-
tribution. This approach consists in using reversible kernels Qi

associated with probabilities q(i|Xt) modeling a random modifi-
cation of the current configuration Xt to successively propose a
new configuration and evaluate its acceptance probability. The al-
gorithm operated by repeating such steps in order to build a series
of configurations which stationary distribution is the desired tar-
get distribution π. A generic implementation of this algorithm is
available and detailed in (Brédif and Tournaire, 2012). In the pro-
posed approach, the reversible kernels used are: birth and death
kernel, edge translation kernel, and height scaling kernel.

3.3 Trans-Dimensional Simulated Annealing

In order to drive the RJMCMC sampler to the target probabil-
ity distribution, whe use simulated annealing (SA), a widely used
local metaheuristic (Salamon et al., 2002). This approach of cou-
pling a RJMCMC sampler within a simulated annealing may be
referred to as Trans-Dimensional Simulated Annealing (TDSA)
(Singh et al., 2008). The idea of the approach is to sample in-
creasingly more selectively from the RJMCMC sampler until a
convergence criteria is reached (usually a given number of itera-
tions or a maximum variation of energy during a certain number
of iterations).

3.4 Energetic modeling

An attractive property of a marked point processX is that we can
define its probability density function (pdf) through a Gibbs en-
ergy with respect to the reference process: f(X) = Z−1e−E(X),
where Z =

∫
X
e−E(X)dµ(X) is the normalization factor, with

µ(.) as the probability distribution of the reference process. The
energy function E(X) can express the quality of a configuration
of marked points. In our case, it indicates the conformity with
urban planning rules as well as a desired criteria to optimize (the
total building volume for instance). We introduce a global en-
ergy composed as the sum of finite weighted energy terms, each
of which is formed according to a specific urban planning rule.



K =

point︷ ︸︸ ︷
[0, 1]× [0, 1]︸ ︷︷ ︸

c′i

mark︷ ︸︸ ︷
× [ρmin, ρmax]× [0, π]︸ ︷︷ ︸

~vi

× [rmin, 1]︸ ︷︷ ︸
ri

× [hmin, hmax]︸ ︷︷ ︸
hi

. (1)

Therefore, the problem of finding the optimal building layout that
complies with urban planning rules can be translated into finding
the configuration of building boxes X̃ by maximizing the proba-
bility f(.) using a RJMCMC sampler under a TDSA framework:
X̃ = argmaxf(.). Urban planning rules vary by countries and
cities. The French urban planning scheme is studied in this paper.
Common rules are extracted and modeled by energy terms. The
detail is presented in the following section.

4 URBAN RULES TO ENERGY TERMS

A PLU (French urban planning scheme) document provides a
zoning plan dividing an urban territory into several zones, and
specifies applicable regulations for each type of zone. The reg-
ulations may include all or some of the 16 articles provided by
the urban planning code. Each of these articles describes a fixed
theme. For instance, article 1 describes prohibited land use and
article 16 describes electronic communication infrastructures and
network. This work only focuses on the articles that regulate the
spatial aspects of buildings. Therefore, the studied articles are:

• Article 6: building position in relation to public roads,

• Article 7: building position in relation to separative limits,

• Article 8: building position in relation to other buildings,

• Article 9: building footprint,

• Article 10: building height,

• Article 14: floor area ratio.

Articles 6 and 7 can be considered as one theme: building posi-
tion in relation to parcel borders (front, side, and back borders).
Front borders are the borders adjacent to public roads (or at least
public space). Side and back borders are separative limits adja-
cent to private roads or other parcels. Regarding the buildings
position, the most common rules are for orientation and location.
Therefore, we take into account the following types of rules when
generating optimal building layouts:

• Rule A1: distance to parcel borders,

• Rule A2: distance between buildings,

• Rule A3: parcel coverage ratio,

• Rule A4: floor area ratio,

• Rule B1: angle to parcel borders,

• Rule B2: building height.

Rules B1 and B2 can be satisfied by directly setting constraints on
geometry parameters ρ and h before MPP sampling if the rules
do not depend on dynamic building attributes (e.g location and/or
height of itself and/or of its adjacent buildings). For example, if
the angle rule is that all buildings should be parallel to a fixed
border, which means it does not depend on dynamic building at-
tributes, then the constraint on ρ can be known before sampling.
If the angle rule requires a building to be parallel to its nearest
border, which means it depends on its own location, then the rule
cannot be configured before sampling. Similar for rule B2, the

actual rule may have constraints on height differences between
adjacent buidings. In such cases, rules B1 and B2 should be mod-
eled by energy functions, along with rules A1 to A4. We discuss
the energetic modeling of these rules by categorizing them into
three types: unary, binary, and global energy.

4.1 Unary energy

If the calculation of a type of energy for one building does not
depend on the attributes of other buildings, we refer to such kind
of energy as unary energy. Among all types of rules that we
studied in this work, rule A1 can be modeled by unary distance
energy Eud , and rule B1 can be modeled by unary angle energy
Euθ , when it needs energetic modeling. Thus the total unary
energy can be defined as their weighted sum:

Eu = wudEud + wuθEuθ (2)

Unary distance energy There are generally three types of bor-
ders: front, side, and back borders. One parcel can consist of
zero or more than one borders of each type. Regarless of the
border type, we refer to the distance from a building to a border
as a unary distance. A PLU rule for unary distance could be a
simple constraint involving only one given constant, for instance,
d < 2m. It could also depend on external and/or internal pa-
rameters. For instance, d > max(c/2, h), where c is the largest
width of the road adjacent to the border considered as an external
parameter, and h is the building height considered as an internal
parameter. The valuation of external parameters can be done be-
fore launching the optimization process, whereas the valuation of
internal parameters has to be performed during the optimization
process. Regardless of the timing of valuation, the left value of
the constraint has to be calculated before energetic modeling.

Therefore, all PLU rules for unary distance can eventually be
described by the union of finite disjoint real intervals: duij ∈⋃n

k=1 {Ik(ak, bk)|Ik ∩ ∀Ip 6=k = ∅}, where duij is the distance
from the ith building to the jth border, and Ik is an real inter-
val with endpoints ak and bk. The corresponding energy can be
defined as:

E
ud
ij =

{
0 duij ∈

⋃
Ik

g(duij) duij /∈
⋃
Ik

(3)

where g(.) is a penalty function that penalizes non-acceptable
distance values.

If the rules for all borders are of logical conjunction: dui1 ∈
A1&dui2 ∈ A2...&d

u
im ∈ Am, then the unary distance energy for

ith building is Eud
i =

∑m
j=1E

ud
ij . If there exist rules of logical

disjunction like duij ∈ Aj ||duik ∈ Ak, thenEud
ijk

= min(E
ud
ij , E

ud
ik ).

There could also be of logical conjunction in each operand of
logical disjunction, so the final Eud

i can hardly be discribed by
a generic formula. Example of such complex rules can be found
in section 5. Eventually, the overall unary distance energy for a
parcel with n buildings is:

Eud =

n∑
i=1

E
ud
i (4)



Unary angle energy We refer to the angle between a building
and a parcel border as unary angle. All PLU rules for unary angle
can be eventually described by the union of finite disjoint real
intervals: θuij ∈

⋃n
k=1 {Ik(ak, bk)|Ik ∩ ∀Ip6=k = ∅}, where θuij

is the angle from the ith building to the jth border, and Ik is an
real interval with endpoints ak and bk. The corresponding energy
can be defined as:

E
uθ
ij =

{
0 θuij ∈

⋃
Ik

g(θuij) θuij /∈
⋃
Ik

(5)

where g(.) is a penalty function that penalizes non-acceptable an-
gle values.

In practice, a PLU rule for unary angle normally only involves
one border, for example, each building should be parallel to a
fixed border or to it’s nearest border. The involved Jth border can
be determined before energetic modeling. Therefore, the unary
angle energy for the ith building is:

E
uθ
i = E

uθ
iJ(i) (6)

The overall unary angle energy for a parcel with n buildings is:

Euθ =

n∑
i=1

E
uθ
i (7)

4.2 Binary energy

If the calculation of a type of energy invloves two buildings in the
same parcel, we refer to such kind of energy as binary energy.
Among all types of rules that we studied in this work, rule A2
can be modeled by binary distance energy Ebd , and rule B2 can
be modeled by binary height energy Ebh , when it concerns the
height difference between two adjacent buildings. Thus the total
binary energy can be defined as their weighted sum:

Eb = wbdEbd + wbhEbh (8)

Binary distance energy We refer to the distance between two
buildings on the same parcel as binary distance. All PLU rules for
binary distance can be eventually described by the union of finite
disjoint real intervals: dbij ∈

⋃n
k=1 {Ik(ak, bk)|Ik ∩ ∀Ip6=k = ∅},

where dbij is the distance between the ith and the jth building,
and Ik is an real interval with endpoints ak and bk. The corre-
sponding energy can be defined as:

E
bd
ij =

{
0 dbij ∈

⋃
Ik

g(dbij) dbij /∈
⋃
Ik

(9)

where g(.) is a penalty function that penalizes non-acceptable
values. The overall binary distance energy for a parcel with n
buildings is therefore:

Ebd =

n−1,n∑
i=1,j>i

E
bd
ij (10)

Binary height energy We refer to the height difference be-
tween two buildings on the same parcel as binary height. All PLU
rules for binary height can be described by the union of finite dis-
joint real intervals: hb

ij ∈
⋃n

k=1 {Ik(ak, bk)|Ik ∩ ∀Ip6=k = ∅},
where hb

ij is the height difference between the ith and the jth

buildings, and Ik is an real interval with endpoints ak and bk.
The corresponding energy can be defined as:

E
bh
ij =

{
0 hb

ij ∈
⋃
Ik

g(hb
ij) hb

ij /∈
⋃
Ik

(11)

where g(.) is a penalty function that penalizes non-acceptable
values. The overall binary height energy for a parcel with n build-
ings is therefore:

Ebh =

n−1,n∑
i=1,j>i

E
bh
ij (12)

4.3 Global energy

If the calculation of a type of energy involves all buildings in the
same parcel, we refer to such kind of energy as global energy.
Among all types of rules that we studied in this work, rule A3
can be modeled by global coverage energy Egc , and rule A4 can
be modeled by global builtup energy Egf . Thus the total global
energy can be defined as their weighted sum:

Eg = wgcEgc + wgfEgf (13)

Global converage energy is used to model the PLU rule for
parcel coverage ratio (PCR). Normally, a constant valuemaxpcr
is given as the upper limit of PCR, and the implicit lower limit
of PCR is zero (no building on the parcel). Therefore, the global
coverage energy can be defined as:

Egc =

{
0 xc ∈ [0,maxpcr]

g(xc) xc ∈ (maxpcr,+∞)
(14)

where g(.) is a penalty function that penalizes non-acceptable
values.

In order to help urban planners to access the effect of the PLU rule
for PCR, an optimization task for PCR is often demanded, which
is to generate building layouts with PCR values approching to
maxpcr. Therefore, an alternative global coverage energy func-
tion can be defined as:

Egc =

{
g1(xc) xc ∈ [0,maxpcr]

g2(xc) xc ∈ (maxpcr,+∞)
(15)

where g1(.) and g2(.) can be different penalty functions that pe-
nalizes less favorable values and non-acceptable values respect-
fully.

Global builtup energy is used to model the PLU rule for floor
area ratio (FAR). Normally, a constant value maxfar is given
as the upper limit of FAR, and the implicit lower limit of FAR is
zero (no buildings on the parcel). Therefore, the global builtup
energy can be defined as:

Egf =

{
0 xf ∈ [0,maxfar]

g(xf ) xf ∈ (maxfar,+∞)
(16)

where g(.) is a penalty function that penalizes non-acceptable
values.

Similarly, optimization for FAR is also frequently demanded, and
an alternative global builtup energy function can be defined as:

Egf =

{
g1(xf ) xf ∈ [0,maxfar]

g2(xf ) xf ∈ (maxfar,+∞)
(17)



where g1(.) and g2(.) can be different penalty functions that pe-
nalizes less favorable values and non-acceptable values respect-
fully.

5 CASE STUDY

This section presents a case study realized on an actual parcel
from the French city of La Courneuve illustrated in figure 2. The
objective is to generate optimized building layouts on the given
parcel of land with maximal floor area ratio, meanwhile satisfying
all the PLU rules concerning this parcel.

Figure 2: The target land parcel for the case study.

The PLU rules for this parcel are:

• Article 6: (1) Distance from each building to the front border
should be greater than 3 meters; (2) All buildings should be
parallel to the front border,

• Article 7: Distances from each building (with height h) to
the two side borders d1, d2 should satisfy (d1 = 0, d2 =
0)||(d1 = 0, d2 ≥ max(6, h))||(d1 ≥ max(6, h), d2 =
0). Distance from each building to the back border should
be greater than 4 meters,

• Article 8: Distance between each two buildings should be
greater than 4 meters,

• Article 9: Maximal parcel coverage ratio is 0.6,

• Article 10: Minimal building height is 6 meters and maxi-
mal building height is 18 meters,

• Article 14: Maximal floor area ratio is 3.

The strategy for handling these rules is:

• Rule A1: Article 6(1) and Article 7 → unary distance en-
ergy,

• Rule A2: Article 8→ binary distance energy,

• Rule A3: Article 9→ global coverage energy,

• Rule A4: Article 14→ global builtup energy,

• Rule B1: Article 6(2)→ constraint on parameter ρ,

• Rule B2: Article 10→ constraint on parameter h.

5.1 Energy terms

The total energy for each building layout is defined as the weighted
sum of unary distance energy eud , binary distance energy ebd ,
global coverage energy egc , and global builtup energy egf .

e = wudeud + wbdebd + wgcegc + wgf egf (18)

The Gaussian error function erf(.) is used as penalty function to
form all the energy terms.

Unary distance energy

1. Distance from ith building to 1st border (front border) should
satisfy dui1 >= 3. The energy is defined as:

e
ud
i1 =

{
−100erf(0.2(dui1 − 3)) dui1 ∈ (−∞, 3)

0 dui1 ∈ [3,+∞)
(19)

2. Distance from ith building to 2nd and 3rd borders (side bor-
ders) should satisfy: (dui2 = 0 && dui3 = 0) || (dui2 = 0 &&
dui3 ≥ max(6, hi)) || (dui2 ≥ max(6, hi) && dui3 = 0).
We first define four atomic energy terms:

• For rule dui2 = 0:

e
ud
i2a

=

{
−100erf(0.2dui2) dui2 ∈ (−∞, 0)

100erf(0.2dui2) dui2 ∈ [0,+∞)
(20)

• For rule dui3 = 0:

e
ud
i3a

=

{
−100erf(0.2dui3) dui3 ∈ (−∞, 0)

100erf(0.2dui3) dui3 ∈ [0,+∞)
(21)

• For rule dui2 ≥ max(6, hi):

e
ud
i2b

=

{
−100erf(0.2(dui2 −Ri)) dui2 ∈ (−∞, Ri)

0 dui2 ∈ [Ri,+∞)

(22)
where Ri = max(6, hi)

• For rule dui3 ≥ max(6, hi):

e
ud
i3b

=

{
−100erf(0.2(di3 −Ri)) di3 ∈ (−∞, Ri)

0 di3 ∈ [Ri,+∞)

(23)
where Ri = max(6, hi)

Then the energy for side border rule is defined as:

e
ud
i(2,3)

= min(max(e
ud
i2a
, e

ud
i3a

),max(e
ud
i2a
, e

ud
i3b

),max(e
ud
i2b
, e

ud
i3a

))

(24)

3. Distance from ith building to 4th border (front border) should
satisfy dui4 >= 4. The energy is defined as:

e
ud
i4 =

{
−100erf(0.2(dui4 − 4)) dui4 ∈ (−∞, 4)

0 dui4 ∈ [4,+∞)
(25)

Then, the unary distance energy for the ith building is:

e
ud
i = e

ud
i1 + e

ud
i(2,3)

+ e
ud
i4 (26)



And the total unary distance energy for a configuration with n
buildings is:

eud =

n∑
i=1

e
ud
i (27)

Binary distance energy Distance from ith and jth building
should satisfy dbij >= 4. The energy is defined as:

e
bd
ij =

{
−100erf(0.2(dbij − 4)) dbij ∈ (−∞, 4)

0 dbij ∈ [4,+∞)
(28)

Then, the total binary distance energy for a configuration with n
buildings is:

ebd =

n−1,n∑
i=1,j>i

e
bd
ij (29)

Global coverage energy The parcel coverage ratio should sat-
isfy xc ≤ 0.6, so the global coverage energy is defined as:

egc =

{
0 xc ∈ [0, 0.6]

100erf(xc − 0.6) xc ∈ (0.6,+∞)
(30)

Global builtup energy The floor area ratio should satisfy is
xf ≤ 3, and there is an optimization task for the final building
layout approching to the upper limit xf = 3. Thus we define the
energy function as:

egf =

{
10(xf − 3)2 xf ∈ [0, 3]

100erf(xf − 3) xf ∈ (3,+∞)
(31)

5.2 Implementation and results

The proposed approach is implemented using the open source
c++ library librjmcmc (Brédif and Tournaire, 2012), which pro-
vides a framework for stochastic optimization using RJMCMC
samper and simulated annealing. We use this framework for sim-
ulating urban planning rules using a marked point process of
cuboids. 50 experiments are conducted on a machine (HP work-
station Z210) with 3.3GHz dual core CPU (Intel Core i5-2500)
and 8 GB memory under 32 bit Linux environment (Ubuntu 13.04).
The average CPU computation time is 252892 ms (approx. 4
minutes and 12 seconds) per experiment with 3 million iterations
for simulated annealing.

e = 30eud + 20ebd + 20egc + 50egf (32)

The weights of the energy terms used in these experiments are
given in Equation 32. The statistics of the parcel coverage ra-
tio and floor area ratio are given in Table 1. The results can be
assessed from two aspects: 1) the optimization of the floor area
ratio and 2) the comformity with all the PLU rules reflected by
energy values. Therefore, we verify the two results with highest
and lowest floor area ratio and the two results with highest and
lowest energy.

Table 1: Statistics of 50 experiments.
floor area ratio parcel coverge ratio

min max average min max average
1.60993 2.99672 2.21107 0.310011 0.61312 0.469303

5.2.1 Results with the highest and lowest floor area ratio
Since the optimization task of this case study is to maximize the
floor area ratio within an upper limit FAR ≤ 3, we verify these
two extreme outcomes. The result with the highest floor area ra-
tio is shown in Figure 3, and its detailed properties are given in
Table 2. Some rules can be satisfied within acceptable tolerance
of error (in blue). There is one violation of the rule (in red) may
not be accepted in reality, but it can be easily fixed by postpro-
cessing transformation. The result with the lowest floor area ratio
is shown in Figure 4, and its detailed properties are given in Table
3. All the PLU rules are satisfied within 0.2 meters tolerance of
error, and the floor area ratio reached to 53.66% of its maximum.
This result validates our approach by showing that even the worst
possible result can still be satisfying.

(a) Building layout

(b) Footprints

(c) Energy plot

Figure 3: Result with the highest floor area ratio.

5.2.2 Results with the highest and lowest energy Since the
compliance of the PLU rules and the optimization of floor area
ratio are reflected by energy, we verify these two extreme out-
comes. The result with the highest energy value is shown in Fig-



Table 2: Properties of the result with highest floor area ratio.
dFront dSide1 dSide2 dBack height

bldg0 50.3493 18.2548 0.0004 4.1528 18
bldg1 2.8052 1.5012 0.2108 47.5014 18
bldg2 33.9305 18.8940 0.0129 31.1415 15
bldg3 38.6350 0.2542 16.1756 7.2704 15

Binary distance
db01 db02 db03 db12 db13 db23

20.3253 3.9695 11.6544 3.9066 8.6111 12.1260
Parcel coverage ratio = 0.5230

Floor area ratio = 2.9967
Energy

30eud 20ebd 20egc 50egf total energy
1299.39 55.9319 0 0.00538 1355.32

(a) Building layout

(b) Footprints

(c) Energy plot

Figure 4: Result with the lowest floor area ratio.

ure 5, and its detailed properties are given in Table 4. There is one
violation of the rule (in red) may not be acceptable in practice, but
can be easily rectified by transformation in postprocessing. The
result with the lowest energy is regarded as the best solution. It is

Table 3: Properties of the result with lowest floor area ratio.
dFront dSide1 dSide2 dBack height

bldg0 15.5205 18.8965 6.529e-07 47.1977 18
bldg1 26.7261 0.0796 14.062 36.0455 12
bldg2 2.9182 0.1945 14.9991 54.9106 15
bldg3 45.9468 0.0518 17.8391 7.0341 15
bldg4 45.9698 17.808 0.0003 6.38574 15

Binary distance
db01 db02 db03 db04 db12 db13

9.98308 11.0886 20.7292 15.6475 3.92361 4.29164
db14 db23 db24 db34

10.1291 23.1443 25.3415 12.8055
Parcel coverage ratio = 0.329935

Floor area ratio = 1.60993
Energy

30eud 20ebd 20egc 50egf total energy
276.123 34.4739 0 966.147 1306.74

shown in Figure 6, and its detailed properties in Table 5. All the
PLU rules are satisfied within 0.2 meter’s tolerance of error, and
the floor area ratio reached to 81.18% of its maximum.

Table 4: Properties of the result with the highest energy.
dFront dSide1 dSide2 dBack height

bldg0 7.32 0.558052 9.31182 6.81932 9
bldg1 20.1219 14.4473 0.793807 19.9008 15

Binary distance db01 = 1.1065
Parcel coverage ratio = 0.60879

Floor area ratio = 2.1413
Energy

30eud 20ebd 20egc 50egf total energy
909.201 1173.75 39.6696 368.681 2491.3

Table 5: Properties of the result with the lowest energy.
dFront dSide1 dSide2 dBack height

bldg0 3.98306 18.9307 5.364e-06 59.772 18
bldg1 33.7205 0.20625 14.8007 5.28895 15
bldg2 25.1778 13.3745 1.194e-05 5.76251 12
bldg3 2.99916 0.02221 14.2492 51.3647 12

Binary distance
db01 db02 db03 db12 db13 db23

19.163 7.42981 10.303 5.42371 7.38893 5.08948
Parcel coverage ratio = 0.55157

Floor area ratio = 2.43554
Energy

30eud 20ebd 20egc 50egf total energy
155.179 0 0 159.305 314.484

6 CONCLUSION AND PERSPECTIVES

This paper proposes an original approach in order to provide an
intuitive understanding of urban planning rules, especially for the
rules concerning geometry of the buildings that are allowed to be
built. For this purpose, we propose to simulate these rules by gen-
erating 3D building layouts in conformity with them, by using a
stochastic optimization approach. Moreover, our approach also
allows to generate acceptable building layouts with optimized ur-
ban indicators (e.g. floor area ratio), so as to help urban planners
in the assessment of the impacts of the rules on constructability.
Taking a sample of French PLU rules as examples, several com-
mon rules are studied and modeled into an energy function. Low
energy means less violation of the rules. The minimization of
the energy function is realized by stochastic optimization using
RJMCMC sampler in a simulated annealing framework. We car-
ried out a case study using real data and rules. The results proved
that our method is capable of accomplishing the required task.
However, due to the diversity of the rules, the robustness and the
genericity of our method are still to be assessed. More complex



(a) Building layout

(b) Footprints

(c) Energy plot

Figure 5: Result with the highest energy.

rules and use cases will be studied in the near future. We plan
to lead extra work to design an energy term weight determination
method.

This work is realized in the context of the FEDER e-PLU project
(http://www.e-plu.fr/) whose aim is to propose a web platform
dedicated to territorial engineering. This platform will provide
services such as 3D city navigation, right to build consultation
and co-design of urban regulations and will be tested on Plaine-
Commune inter-communality by the end of 2015.

Some extensions of the simulator will be realized such as the pos-
sibility of managing several types of objects associated to pro-
jected buildings. This includes objects such as parking spaces,
whose dimensions are linked, in the regulation, to the parcel floor
area, or building architectural elements, that can be generated
with procedural grammars (as it is realized in (Talton et al., 2011)).
A last perspective is to link this tool with other simulators that
consider other phenomena such as solar radiation or house prices

(a) Building layout

(b) Footprints

(c) Energy plot

Figure 6: Result with the lowest energy.

in order to assess the influence of the regulation on these phe-
nomena.
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